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A B S T R A C T

Studies of host factors that affect susceptibility to viral infections have led to the possibility of determining the
risk of emerging infections in potential host organisms. In this study, we constructed a computational framework
to estimate the probability of virus transmission between potential hosts based on the hypothesis that the major
barrier to virus infection is differences in cell-receptor sequences among species. Information regarding host
susceptibility to virus infection was collected to classify the cross-species infection propensity between hosts.
Evolutionary divergence matrices and a sequence similarity scoring program were used to determine the dis-
tance and similarity of receptor sequences. The discriminant analysis was validated with cross-validation
methods. The results showed that the primary structure of the receptor protein influences host susceptibility to
cross-species viral infections. Pair-wise distance, relative distance, and sequence similarity showed the best
accuracy in identifying the susceptible group. Based on the results of the discriminant analysis, we constructed
ViCIPR (http://lcbb3.snu.ac.kr/ViCIPR/home.jsp), a server-based tool to enable users to easily extract the cross-
species infection propensities of specific viruses using a simple two-step procedure. Our sequence-based ap-
proach suggests that it may be possible to identify virus transmission between hosts without requiring complex
structural analysis. Due to a lack of available data, this method is limited to viruses whose receptor use has been
determined. However, the significant accuracy of predictive variables that positively and negatively influence
virus transmission suggests that this approach could be improved with further analysis of receptor sequences.

1. Introduction

Over the past 50 years, new infections caused by pathogens such as
human immunodeficiency virus (HIV), Ebola virus, severe acute re-
spiratory syndrome coronavirus (SARS-CoV), H5N1 avian influenza
virus, antibiotic-resistant S. aureus, and antibiotic-resistant
Mycobacterium tuberculosis have emerged worldwide (Snowden, 2008;
Jones et al., 2008). The majority of these new infections are caused by
infectious agents crossing species barriers and completing their life
cycle with expanded host ranges, a process that is influenced by diverse
parameters (Domingo, 2010; Woolhouse and Gowtage-Sequeria, 2005).
Given the necessity and importance of early detection and response to
potential threats, experts from various fields have attempted to address
this problem, although it has yet to be solved. For decades, emergent
viruses have been studied using both classical methods of virology and
genome-based technologies. Recently, computational approaches,

including bioinformatics, have also been used, such as genome se-
quencing, construction of databases and analysis systems, and devel-
opment of models and software to predict emerging infections
(Rappuoli, 2004; Haagmans et al., 2009; Pepin et al., 2010; Morse et al.,
2012; Woolhouse et al., 2012). There have also been studies in-
vestigating genomic patterns of receptor proteins or receptor-binding
domains that influence host susceptibility to viral infections, which
have enabled the discrimination of infection propensities based on the
primary structure of receptors without requiring complicated structural
analysis (Rogers et al., 1983; Matrosovich et al., 2000; Graham and
Baric, 2010; Bae and Son, 2011; Imai and Kawaoka, 2012). The cell-
surface proteins used as receptors by viruses have been identified
(Schneider-Schaulies, 2000; Dales, 1973; Grove and Marsh, 2011).
However, determining the biological parameters that influence vir-
us–receptor interactions is problematic because the virus is different
from the natural ligands or substrates of the receptors (Dimitrov, 2004;
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Skehel and Wiley, 2000). In addition, the details of the entry, pene-
tration, and uncoating of some viruses are unclear. This is gradually
being overcome by the increasing availability of virus genetic in-
formation and the ongoing advancements in computerized data-pro-
cessing and sequence-analysis methods (Dales, 1973; Dimitrov, 2004).
In the present study, the distance and similarity of receptor proteins
that function as a species barrier to viral infection were calculated and
used to predict the propensity for cross-species viral infections between
host species. With the aim of estimating the capacity of viruses to affect
the emergence of new viral diseases, we developed a computational
framework to predict the cross-species infection propensities of viruses
using receptor sequences. We postulated that a virus from a reservoir
might be able to adapt to a new host only if the similarity between
receptor proteins present in the potential host species is high enough for
them to cross the species barrier. Evolutionary divergence matrices
were used to calculate distance scores of target sequence pairs con-
sidering amino acid substitutions, and overall sequence similarities
were computed using Java programming.

2. Materials and methods

2.1. Data sets

Receptor sequences of 98 species of source organisms were collected
from the NCBI protein database. In total, 277 amino acid sequences for
18 types of receptor proteins were collected by choosing non-partial
sequences. Accordingly, 18 receptor data sets consisting of orthologous
amino acid sequences derived from different species were constructed
(Table 1). Multiple sequence alignment was performed on collected
sequences with MUSCLE using the default parameters for each receptor
data set (Edgar, 2004). Using the alignment results, an original data set
was constructed to train, validate, and test build a classifier. For each
receptor data set, all possible sequence pairs were generated to con-
struct the original data set, which is the source of variables for the
classification model. Sequence variation in receptor proteins is relevant

in the conformational differences of virus–host interaction interfaces
and in protein expression, which may strongly influence viral infection
propensity. With the aim of confirming the effect of receptor similarity
on host susceptibility to cross-species infection, evolutionary distances
and sequence similarities were calculated and used to classify groups of
infection propensity from 50 sequence pairs of training sets. A test data
set was constructed with 6 sequence pairs that were randomly split
from the original data for each group ratio. Of the original datasets
(consisting of 56 sequence pairs), 50 were used for model construction
using discriminant analysis, and 6 were used for validation using the
constructed models. Two groups were classified based on susceptibility
to viral infection: Group 1, which contained sequence pairs with high
similarity, which increases cross-species infection propensity, and
Group 2, which contained sequence pairs with low similarity, which
decreases cross-species infection propensity. The possibility of vir-
us–host-cell interactions, which confer host susceptibility to viral in-
fection, was determined using a database search and literature review
for each virus with specific receptor used. Viruses with unknown or
unspecified host receptors were excluded from the original data set, and
both zoonotic and non-zoonotic viruses were included. Each receptor
data set had at least one sequence derived from the natural host (pri-
mary reservoir). The numbers of sequence pairs for each group in the
original data set were 36 and 20, respectively. The frequencies of the
groups in the training data sets were 32 and 18, and those in the test
data sets were 4 and 2, respectively.

2.2. Calculation of distance scores and sequence similarities

Classification of host pairs into infectivity groups was performed
using evolutionary distance and sequence similarity based on sequence
alignment. Multiple sequence alignments and optimal pairwise se-
quence alignments were performed on the collected sequences of each
of the 18 receptor protein sets using MUSCLE (Edgar, 2004). A scoring
matrix was used to represent the evolutionary distance of a sequence
from the other sequence within the pair. MEGA6 software was used to
calculate the distance (Tamura et al., 2013). The distance of a residue
within a sequence was measured as the substitution score from the
amino acid of the relevant column in a matched sequence. The matrix
showed substitution scores for all possible sequence pairs within a re-
ceptor data set. Total sequence similarity was calculated using Java
programming based on the alignment results. As a result of the distance
and similarity analysis, we parameterized the absolute distance (pair-
wise distance), relative distance, and overall sequence similarity for
each host pair in the data set. All of the host-pair data used to generate
predictive variables were examined for infection characteristics by lit-
erature review. The absolute distance (pairwise distance, gSi,1) is an
estimate of the evolutionary divergence between sequences and is de-
fined as the number of amino acid substitutions between aligned se-
quences. The Poisson correction model was used as a substitution model
and the complete deletion method was used to process gaps/missing
data (Zuckerkandl and Pauling, 1965). The relative distance (gSi,2) is
the ratio of the pairwise distance to the maximum distance value cal-
culated from the distance analysis results (pair-wise distance ÷ max-
imum distance within datasets). The total similarity (gSi, 3) is the result
of a similarity analysis of all possible host-pairs in the dataset, which is
the number of matched amino acids in an orthologue sequence to the
total length of the aligned sequence including indels. These three in-
dependent variables were used to classify group members into the
cross-species infectious or non-infectious group, and the decision
coefficients obtained from the discriminant analysis were used to build
a prediction model. In our study, similarity of predicted interaction
hotspots with some amino acid residues in the receptor sequence had
been considered a candidate predictive variable, but the significance of
the discriminant analysis was low, and it was excluded from the pre-
diction model. The scores for the three variables were defined as:

Table 1
List of the 18 virus receptors used in this study.

Virus Receptor

HIV CD4
Hantaviruses, foot-and-mouth disease virus Integrin αvβ3
SARS coronavirus ACE2
Rabies virus nAchR
Echovirus (E-6, E-7, E-11, E-12, E-20, E-21 and E-70),

coxsackievirus A and B (CV-A21, CV-B1, CV-B3 and CV-
B5)

CD55

HCoV-229E (severe acute respiratory syndrome-associated
coronavirus)

APN

Vesicular stomatitis virus PS receptor
Encephalomyocarditis virus VCAM1
Hepatitis A virus HAVCR1
Measles virus vaccine strains CD46
Measles virus wild-type strains SLAM
MERS coronavirus DPP4
Nipah virus Ephrin B2,

Ephrin B3
Lassa virus, lymphocytic choriomeningitis virus DAG1
Junin arena virus, Machupo virus TRFC
Sendai virus ASGR2

The amino-acid sequences of 18 receptors for 20 viruses were used to construct
an original data set consisting of receptor sequence pairs. CD4: cluster of dif-
ferentiation 4; CD61: cluster of differentiation 61; ACE 2: angiotensin con-
verting enzyme 2; nAchR: nicotinic acetylcholine receptor; CD55: Complement
decay-accelerating factor; aminopeptidase N; PS: Phosphatidylserine; VCAM1:
vascular cell adhesion molecule 1; HAVCR1; Hepatitis A virus cellular receptor
1; CD46: cluster of differentiation 46; SLAM: signaling lymphocytic activation
molecule; DPP4: Dipeptidyl peptidase-4; DAG1: Dystroglycan1; TRFC: trans-
ferrin receptor; ASGR2: asialoglycoprotein receptor 2.
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where gSi,1 is the score for the distance of the ith (the number of variable
sets) row of infectivity group g (), gSi,2 is the score for the relative
distance of the ith row of infectivity group g, and gSi,3 is the score for
similarity of the ith row of infectivity group g. The distance scores,
which categorized absolute and relative scores, and the similarity scores
of collected sequence pairs were stored in a MySQL database. All de-
cision coefficients for three independent variables were calculated and
used to construct a model for classifying group members using a dis-
criminant function.

2.3. Discriminant analysis

IBM SPSS Statistics 24.0 (Cor, 2016; Green et al., 1996) and XLSTAT
(Addinsoft, 2017) software were used for discriminant analysis to
classify susceptibility to cross-species infection based on receptor si-
milarity. Discriminant analysis is a form of multivariate analysis in
which distinct sets of observations are classified according to previously
defined groups, and a model is built from predictive variables and ob-
jects to allocate new observations to pertinent groups (Mika et al.,
1999). The discriminant analysis method classifies an individual object
into the group using the discriminant scores from linear discriminant
function or the Mahalanobis distance from pooled covariance matrices
of non-normally distributed sets (Mika et al., 1999). In this study, we
used discriminant scores to estimate infection propensities considering
that the differences in probability of cross-species infection of viruses
between the two groups (infectious and non-infectious) should be
maximally reflected and quantitatively expressed through the same
index. Considering that the adjustment for the scalar propensity score is
sufficient to remove bias due to all observed covariates (Rosenbaum
and Rubin, 1983), we calculated propensity scores of all sequence pairs
to estimate cross-species infection propensities between host species
through the adjustment of observed covariates and determinant scores.
The adjustment was performed by calibrating determinant scores of all
sequence pairs using the first order function formula derived using the
determinant score range and the centroid for each group. The z-score
was used as a cut-off for classifying each group member into the in-
fectious or non-infectious group. The coefficient of determination
(discriminant coefficient) is estimated to maximize the difference be-
tween the groups, and is multiplied by each independent variable as a
weighted score. The discriminant scores of all sequence pairs were
calculated and the average discriminant scores were used to obtain the
group centroid. The discriminant and propensity scores were stored in a
MySQL database and used to generate a web application system.

2.4. Accuracy evaluation

In cross validation, each case was classified by the functions derived
from all cases. Leave-one-out cross-validation was performed to analyze
the accuracy of discriminant analyses, and the erroneous classification
rates were verified (Lachenbruch and Mickey, 1968). A single object
was first omitted from training, and the discriminant model was built
with leave-one-out cross-validation. The omitted subject members were
classified after training based on the built model. A total of 50 rounds of
class predictions were performed, and the calculated confusion matrices
were assessed. For the original and cross-validated grouped cases, the
ratio of the number of correctly grouped members to total members was

calculated, respectively. The performance of the discriminant model
can be determined by calculating the sensitivity, specificity, total
classification accuracy, and area under the receiver operating char-
acteristic (ROC) curve (AUC). Performance scores were calculated from
the confusion matrices for the training sample, validation samples, and
cross-validation results (Foody, 2002). The sensitivity, specificity, total
classification accuracy, and AUC were defined as follows:

=
+

Sensitivity TP
TP FN

=
+

Specificity TN
TN FP

=

Total classification accuracy
The number of correctly predicted sequence pairs

The total number of sequence pairs

= f x dxAUC ( )
a

b

The accuracies of test data sets are presented as the ratio of the
number of correctly predicted sequence pairs to the total number of test
sequence pairs. Seven rounds of class predictions were performed in the
test phase.

2.5. Design and implementation of the web application system

2.5.1. Data resources
The propensity scores calculated from the discriminant analysis

using the original data set were used for the implementation of our web
application system. We named the propensity score, which indicates the
probability of viral infection between species, Infectindex. The calcu-
lated Infectindex values ranged from 0.001 to 99.994% in the total data
set, from 0.001 to 36.946% in the non-infectious group, and from
68.294 to 99.994% in the infectious group.

We also collected and stored reference sequences for 24 virus gen-
omes to generate the target sequence resources required to execute the
Search Engine (Sequence Similarity Scoring System) according to the
virus sequence query input. Accession numbers and viral species for
reference genome sequences used in the study were as follows: NC_
001479.1 (encephalomyocarditis virus), AF465516.1 (echovirus E7,
human echovirus 7 strain Wallace), NC_004004.1 (foot-and-mouth
disease virus), NC_005219.1 (Hantaan virus), NC_001489.1 (hepatitis A
virus), NC_002645. 1 (human coronavirus 229E), NC_001802.1 (human
immunodeficiency virus 1), NC_005080.1 (Junin virus segment L),
NC_005081.1 (Junin virus segment S), NC_004297.1 (Lassa virus seg-
ment L), NC_004296.1 (Lassa virus segment S), NC_004291.1 (lym-
phocytic choriomeningitis virus segment L), NC_004294.1 (lymphocytic
choriomeningitis virus segment S), NC_005079.1 (Machupo virus seg-
ment L), NC_005078.1 (Machupo virus segment S), NC_001498.1
(measles virus), NC_019843.3 (Middle East respiratory syndrome cor-
onavirus), NC_002728.1 (Nipah virus), NC_001542.1 (rabies virus), NC_
003436.1 (porcine epidemic diarrhea virus), NC_004718.3 (SARS cor-
onavirus), NC_001552.1 (Sendai virus), NC_002306.3 (feline infectious
peritonitis virus), and NC_001560.1 (vesicular stomatitis Indiana virus)
(Table 2).

2.5.2. Database schema and web interface implementation
As a web server-based analysis tool, the web interface of ViCIPR was

programmed to operate with a MySQL-based database to search in-
formation efficiently according to query input and to output calculation
results. The data fields are divided into class (classified group),
casenum (case number), receptor, virus, reservoir, host1 (primary/
donor host), host2 (secondary/receipt host), pairwise_distance, re-
lative_distance, total_similarity, g_verified (verified group), dis-
g_predicted (predicted group by discriminant score), disds_calculated
(calculated discriminant score), disds_trimmed (adjusted discriminant
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score), and Infectindex (cross-species infection propensity) (Table 3).
The values corresponding to each data item (sequence pair) were
classified, assigned, calculated, and stored. Table 3 shows the stored
data items, their types, and the values stored in each item.

In this study, web programming was performed to implement the
functionality provided by ViCIPR. To implement the sequence input
window and an upload function for the user's sequence to perform a
sequence homology search, sequence databases were generated as a
target sequence resource. All collected sequences were stored in a web

project as a FASTA file. We also developed a ‘Sequence Similarity
Scoring System’ based on the Java programming language. HTML, JSP,
and JAVA scripts were also used for web development that includes the
functions of the program. The main analysis page was designed to en-
able users to input or upload a query sequence and select a primary
(donor) host organism from the species available in the database. To
present a selectable secondary (recipient) host species based on the
virus genome sequence with the highest percent identity (%) among the
target sequences (virus reference genome sequences), the web interface

Table 2
List of reference sequences of 24 virus genomes collected and stored for system construction.

Virus name Organism Strain ncbi accession bp length

EMCV Encephalomyocarditis virus Ruckert NC_001479.1 7835
Human echovirus 7 echovirus E7 Wallace AF465516.1 7427
FMDV Foot-and-mouth disease virus - type O Unknown NC_004004.1 8134
Hantavirus Hantaan orthohantavirus Unknown NC_005219.1 3616
Hepatitis A virus Hepatovirus A Unknown NC_001489.1 7478
HCoV-229E Human coronavirus 229E 229E NC_002645.1 27,317
HIV (SIV; Lentivirus) Human immunodeficiency virus 1 Unknown NC_001802.1 9181
Junin virus Junin mammarenavirus Unknown NC_005080.1NC_005081.1 7114

3411
Lassa virus Lassa mammarenavirus Josiah NC_004297.1NC_004296.1 7279

3402
LCMV Lymphocytic choriomeningitis mammarenavirus Unknown NC_004291.1NC_004294.1 6680

3376
Machupo virus Machupo mammarenavirus Carvallo NC_005079.1NC_005078.1 7196

3439
Measles virus Measles morbillivirus Ichinose-B95a NC_001498.1 15,894
MERS-CoV Middle East respiratory syndrome-related coronavirus HCoV-EMC NC_019843.3 30,119
Nipah virus Nipah henipavirus Unknown NC_002728.1 18,246
Rabies virus Rabies lyssavirus Unknown NC_001542.1 11,932
SARS-associated CoV Porcine epidemic diarrhea virus CV777 NC_003436.1 28,033
SARS-CoV SARS coronavirus Unknown NC_004718.3 29,751
Sendai virus Murine respirovirus Ohita NC_001552.1 15,384
TGEV Feline infectious peritonitis virus Unknown NC_002306.3 29,355
VSV Vesicular stomatitis Indiana virus Unknown NC_001560.1 11,161

A reference sequences for 24 virus genomes were collected and stored to generate a target sequence resource for performing a similarity search engine (Sequence
Similarity Scoring System) in ViCIPR according to a virus sequence query input. In constructing the gene database and the protein database, 118 genes and protein
sequences were collected and processed to construct target sequence resources by parsing cds regions of 24 reference genome sequences.

Table 3
List of data in MySQL database.

Field name Type Description

Class varchar (Graham and Baric,
2010)

Data set class of each case: 50 class for training data sets and 6 class for test data sets are designated for each case

Casenum varchar(Graham and Baric,
2010)

Index number for database primary key: a1-a56, b1-b56 used to build training datasets and test datasets contain all data items
with eliminating duplicate values

Receptor varchar(50) Receptor proteins: ACE2, APN, ASGR2, CD4, CD46, CD55, CD61, DAG1, DPP4, Ephrin B2, Ephrin B3, HAVCR1, Integrin alpha
5, NAchR, PS receptor, SLAM, TRFC, VCAM1

Virus varchar(50) Virus name: EMCV, human echovirus 7, FMDV, hantavirus, Hepatitis A virus, HCoV-229E, HIV (SIV; Lentivirus), junin virus,
lassa virus, LCMV, machupo virus, measles virus, MERS-CoV, nipah virus, rabies virus, SARS-associated CoV, SARS-CoV,
sendai virus, TGEV, VSV

Reservoir varchar(50) Information of reservoir hosts of viruses including S. scrofa, B. Taurus, M. musculus, P. alecto, H. sapiens, P. troglodytes, C.
dromedaries, M. brandtii, C. lupus familiaris, R. ferrumequinum, F. cattus, R. norvegicus, C. quinquefasciatus

Host1 varchar(50) 29 species of donor host organisms
Host2 varchar(50) 29 species of recipient host species
pairwise_distance Double Pairwise distance score: 0.008–1.712 for the original data set, 0.375–1.712 for non-infectious group, and 0.008–0.36 for

infectious group
relative_distance Double Relative distance score: 0.004–0.994 for total dataset, 0.433–0.994 for non-infectious group, and 0.004–0.297 for infectious

group
total_similarity Double Overall sequence similarity: 0.156–0.981 for total dataset, 0.156–0.643 for non-infectious group, and 0.608–0.981 for

infectious group
g_verified int(Green et al., 1996) Predetermined group 1 for cases verified as non-infectious group through literature review

Predetermined group 2 for cases verified as infectious group through literature review
disg_predicted int(Green et al., 1996) Score-based predicted group 1 for cases predicted as infectious group by discriminant model

Score-based predicted group 2 for cases predicted as non-infectious group by discriminant model
disds_calculated Double Calculated discriminant z-scores which range from −5.804 to 3.526
disds_trimmed Double z′-scores converted from z-score based on the group centroids, which range from −4.316 to 2.326
Infectindex Double Propensity scores for total data set which range from 0.001 to 99.994%

This table shows the data items, types and the values with description of each data item stored in MySQL DBMS for interworking with the web server ViCIPR.
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was designed to include a dynamic search function for multiple con-
ditions, such as virus species and primary host species, in conjunction
with the MySQL database. The information for potential secondary host
species is provided on the web page, and a dynamic selection box is
presented for confirmation. The web interface was configured to search,
store, and output all information corresponding to virus name, primary
and secondary host species, and Infectindex under a series of analysis
processes to output the calculated infection propensities corresponding
to the selected data item. For reliable data management and future
updates, the pairwise distance, relative distance, total similarity, dis-
criminant scores, and Infectindex values of all sequence pairs were
stored in the MySQL database.

2.5.3. System development environment
We organized a system development environment to use our ana-

lysis system as an open web resource. For the construction of a server-
based calculation program and web interface, we built a server with
Intel Xeon E5-240 v2 2.40GHz CPU, 8Gb RDIMM, 1600MT/s Memory,
300GB 15K RPM, and 6Gbps HDD specification. We used CentOS 6.6 as
the operating system and MySQL 5.5.40 as the data management
system for data storage in a Linux server environment. Java program-
ming language was used for data parsing and computing program de-
velopment, and JSP, HTML, and Java script programming languages
were used for the web pages. The web server program was based on
Apache, and Tomcat v7.0.55 was used as a web container.

3. Results

3.1. A computational framework for estimation of virus infection risk based
on sequence data

We propose a computational framework to estimate propensities of
virus infection between host species. The framework largely consists of
four stages: 1) amino acid sequence analysis and predictive variable
selection, 2) construction of the classification model, 3) model-based
prediction, and 4) calculation of propensity scores (Fig. 1). Based on the
results of the discriminant analysis, three characteristics, which quan-
titatively indicate the evolutionary distance and similarity between two
sequences, were selected as predictive variables and used to construct
the model. The similarity of the interaction hotspots was excluded from
the model structure due to low significance. We derived covariant
matrices and pool-within-class covariant matrices for discriminant
analysis. SPSS 24.0 was used to calculate inverse matrix and dis-
criminant coefficients to derive the discriminant model and evaluate
the contributions of predictive variables. A training data set consisting
of 50 sequence pairs was used for model construction, and the con-
structed classification model was used in model-based prediction using
the test data set consisting of six sequence pairs. The z-scores for all
sequence pairs were used to classify or predict the group of individual
sequence pairs and to estimate the probability of infection between host
species in each data set. In the final step, the propensity score for each
sequence pair was calculated according to each centroid and z-score
transformation equation, and the predicted infection propensity value
was presented as the Infectindex.

3.2. Receptor similarities and propensity scores conferring host susceptibility
to cross-species infection of viruses

Based on the Infectindex, the infection properties were classified
into two groups in the training data set: 32 infectious and 18 non-in-
fectious properties. In the test data set, the infection properties were
also classified into two groups: four infectious and two non-infectious
properties. The discriminant model had 100% sensitivity, specificity,
and total classification accuracy using the training and validation
samples. The AUC was calculated as 1. The accuracy of the six test data
sets was calculated as the ratio of the number of correctly predicted

sequence pairs to the total number of test sequence pairs, and con-
firmed to be 100%. Despite the low level of mutations among the or-
thologous receptor sequences used as the current input data, the high
sensitivity and specificity obtained in our results may be significant for
prediction results produced by the statistical model based on evolu-
tionary and genetic similarities between potential host species.
Variables derived from evolutionary distance and sequence similarity
appear to have acted as positive or negative factors influencing species-
specific susceptibility. However, considering that this approach was
limited to the currently available data, our results may be insufficient to
obtain highly accurate predictions of cases where detailed and specific
infection characteristics must be considered. This limitation serves as a
disadvantage in predicting new cases, especially when the method is
applied to exceptional cases where the similarity to the current input
data is very low. As shown by the relationship among the predictive
parameters and resulting propensity index (Table 4), input data with
close evolutionary distance and high sequence similarity produce an
output result of an infectious group and high Infectindex value. In this
regard, the present model should be cautiously applied to new cases
that may confer more diverse and subtle host specificities under the
assumption that, as evolutionary distance increases and sequence si-
milarity decreases, the probability of sharing sequence properties as-
sociated with susceptibility to cross-species infections also decreases.
Furthermore, the level of variation among receptor sequences may have
a significant impact on host susceptibility, but exceptional patterns can
be observed, for example new cases that do not follow linear species
distances due to subtle differences in host specificity. In this study,
substitution matrices were calculated from target sequences, and the
discriminant model consisting of the combined variables was evaluated.
In the leave-one-out cross-validation, all original grouped cases were
correctly classified. However, the cross-validation result for the test
dataset (83.3%) suggests that incomplete coverage of potential poly-
morphisms in receptor sequences, which may affect infection propen-
sities, can compromise prediction accuracy. Therefore, it remains dif-
ficult to predict risk of infection based on the primary structure
information of the receptor proteins. However, the discriminant coef-
ficient (7.026) of similarity within the sequence pair, which had the
most positive effect on host susceptibility to viral infection, confirmed
the importance of high-accuracy sequence polymorphism in improving
classification and prediction accuracy. These results suggest that our
approach could be improved by including more receptor sequence data.
Both SPSS 24.0 and XLSTAT software were used to conduct the dis-
criminant analysis and accuracy evaluation. The z-scores for all cases in
the training set were −5.804–3.526, and the propensity scores were
0.001–99.993%. The propensity score ranges were 0.001–36.946%, and
68.294–99.993% for the non-infectious and infectious groups, respec-
tively. These results confirmed that the model correctly classified the
original cases into infectious and non-infectious groups with the perti-
nent propensity score range. From the constructed discriminant model,
we devised a simple calculation process that can predict the infection
propensity for new individual cases by deriving the first-order function
formula using the z′-value, which is converted from the discriminant
score using the group centroids.

Table 4 shows cases where there is a high importance of cross-
species host susceptibility to viruses in the classification results of the
discriminant analysis with distance and similarity scores. The re-
presentative zoonotic viruses MERS-CoV and SARS-CoV have an In-
fectindex of 98.759% for C. dromedaries–H. sapiens and 98.495% for F.
catus–H. sapiens. Both cases show a high probability of interspecies
infection. Considering the actual host range of SARS-CoV (Martina
et al., 2003; Holmes, 2005), these findings confirm that the difference
in Infectindex value reflects the infection properties of the virus. In the
case of Nipah virus, the interspecies infection propensity of S. scrofa–H.
sapiens was 88.572%, while that of S. scrofa–I. punctatus was 4.769%.
The results show that the infection properties of the viruses differed
significantly among the host-pair data sets (Chua et al., 1999; AbuBakar
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et al., 2004) (Table 4). In the present study, the maximum calculated
propensity value, which represents the greatest risk of cross-species
infection, was used as the InfectIndex for viruses that recognize dif-
ferent receptors. For example, the InfectIndex between M. brandtii and
H. sapiens for Nipah virus was 88.310 for ephrin B2 and 88.572 for
ephrin B3; we defined the InfectIndex as the highest index value, i.e.
88.572.

3.3. Web resource for cross-species infection propensities

In this study, we constructed ViCIPR, a server-based tool to enable
users to easily extract cross-species infection propensities of specific
viruses using a simple two-step procedure. ViCIPR can be accessed from
a web server at http://lcbb3.snu.ac.kr/ViCIPR/home.jsp.

ViCIPR provides search functions for homology and calculates re-
sults based on query sequences with an interface that allows users to
select from a set of databases, including sequence data sets uploaded by
the user. The target sequence resource for calculating the Infectindex
was the sequence database collected, processed, and stored in the NCBI
protein database. The similarity of a query sequence to database re-
ference sequences is calculated, and the result is presented via the
‘Sequence Similarity Scoring System’. Users can enter a query sequence
by pasting directly into the query box or by uploading a sequence as a
FASTA file from a local computer. Currently, our sequence similarity

scoring system is performed based on three databases: ViCIPR, all nu-
cleotides (genomes); ViCIPR, all cds nucleotides (genes); and ViCIPR,
all cds proteins (proteins). Fig. 2 shows the main components and data
flow of ViCIPR. ViCIPR presents a selectable secondary (recipient) host
species based on similarity search results for the input data corre-
sponding to the query sequence (gene or protein) and the host species,
and presents the Infectindex calculation result at the same time as se-
lecting the options (Fig. 2). Fig. 3 shows the progress and results of
extracting predicted infection propensities of SARS-CoV using ViCIPR.
As shown in Fig. 3, a simple two-step procedure makes it easy to obtain
the Infectindex of two potential hosts for cross-species infection of a
particular virus (Fig. 3).

4. Discussion

Infections caused by newly emerging viruses are serious threats to
public health and have become a global concern. A variety of factors
and their interactions may contribute to disease emergence. In this
study, we focused on how viruses can be transmitted between an es-
tablished reservoir species and a new host species and on what de-
termines the potential of a virus to cross the barrier to a previously
uninfected species. Based on the hypothesis that the major barrier to
interspecies virus infection is the difference between cell-receptor se-
quences, we evaluated the genetic risk for cross-species infections

Fig. 1. A computational framework to estimate propensities for virus infection between host species. The framework largely consists of four stages: 1) amino acid
sequence analysis and predictive variable selection, 2) construction of the classification model, 3) model-based prediction, and 4) calculation of propensity scores.
Based on the results of the discriminant analysis, three measures were selected as predictive variables and used to construct the model. We derived covariant matrices
and pool-within-class covariant matrices for the discriminant analysis. SPSS 24.0 software was used to calculate inverse matrix and discriminant coefficients, to
derive the discriminant model, and to evaluate the contributions of predictive variables. In this figure, C1 and C2 indicate the group centroid of each group used for z′-
value computation, and α and β are the coefficients used to transform the z′-score for propensity estimation.

Table 4
Scores for distance, similarity, discrimination and cross-species infection propensity of receptor sequence pairs.

Virus Host1 Host2 gSi,1 gSi,2 gSi,3 Group DS Infect-index

Sendai virus R. norvegicus M. musculus 0.130 0.068 0.837 1 2.326 99.993
MERS-CoV C. dromedarius H. sapiens 0.084 0.072 0.888 1 2.612 98.759
VSV B. taurus H. sapiens 0.025 0.066 0.893 1 2.616 98.700
SARS-CoV F. catus H. sapiens 0.131 0.106 0.852 1 2.226 98.495
SARS-CoV F. catus M. putorius furo 0.085 0.069 0.897 1 2.693 97.546
HIV (SIV;Lentivirus) P. troglodytes C. aethiops 0.091 0.045 0.904 1 2.879 94.749
HIV (SIV;Lentivirus) C. aethiops H. sapiens 0.088 0.044 0.906 1 2.895 94.505
Hantavirus M. musculus R. norvegicus 0.038 0.094 0.962 1 2.963 93.474
Lassa virus, LCMV R. norvegicus H. sapiens 0.071 0.040 0.927 1 3.046 92.233
Hantavirus R. norvegicus H. sapiens 0.099 0.244 0.901 1 1.788 91.898
Lassa virus, LCMV M. musculus H. sapiens 0.064 0.036 0.933 1 3.102 91.386
Measles virus wild-type strains H. sapiens M. mulatta 0.045 0.057 0.967 1 3.207 89.812
Junin virus, machupo virus M. musculus C. griseus 0.161 0.198 0.836 1 1.647 89.784
Nipah virus S. scrofa H. sapiens 0.025 0.043 0.971 1 3.289 88.572
Nipah virus M. brandtii H. sapiens 0.022 0.038 0.974 1 3.334 87.895
Rabies virus C. lupus familiaris H. sapiens 0.027 0.024 0.963 1 3.338 87.835
Human echovirus 7 P. vampyrus H. sapiens 0.797 0.433 0.420 2 −1.862 36.946
EMCV H. sapiens D. rerio 1.335 0.994 0.234 2 −5.628 19.752
Sendai virus R. norvegicus X. tropicalis 1.075 0.560 0.300 2 −3.093 18.411
Hepatitis A virus H. sapiens L. crocea 1.050 0.822 0.160 2 −5.524 18.180
Measles virus wild-type strains H. sapiens M. davidii 0.405 0.512 0.360 2 −3.135 17.778
Rabies virus B. taurus H. sapiens 1.126 0.986 0.294 2 −5.389 16.151
Lassa virus, LCMV M. musculus D. melanogaster 1.671 0.941 0.200 2 −5.217 13.559
Measles virus vaccine strains H. sapiens S. scrofa 0.776 0.791 0.431 2 −3.748 8.557
HIV (SIV;Lentivirus) P. troglodytes G. gallus 1.359 0.676 0.250 2 −3.766 8.275
VSV H. sapiens A. darlingi 0.375 0.989 0.630 2 −3.856 6.931
Nipah virus S. scrofa I. punctatus 0.625 0.819 0.44 2 −3.999 4.769
HCoV-229E P. alecto C. quinquefasciatus 1.159 0.840 0.289 2 −4.597 4.230
Hepatitis A virus H. sapiens M. brandtii 0.783 0.613 0.186 2 −4.497 2.718
Nipah virus M. brandtii D. rerio 0.570 0.991 0.536 2 −4.316 0.001

Host1, original/donor host species; host2, alternative/recipient host species. gSi,1, gSi,2, and gSi,3, pair-wise distance, relative distance, and total similarity, respec-
tively. Groups were classified based on the discrimination scores (DSs) (1, infectious group; 2, non-infectious group). The DS was calibrated for correct classification
and propensity calculation in the dataset. The group centroid of the discriminant function was 2.428 for the infectious group and −4.316 for the non-infectious
group, and was used to calculate the Infectindex.
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between potential host species based on evolutionary distance and si-
milarity of receptor sequences. Correct results from both the training
and test data sets may have been a result of accurate measurement of
possible sequence variations that affect cross-species infection sus-
ceptibility. The accuracy of predictive variables that positively and
negatively influence virus transmission suggests that this approach
could be improved with additional receptor sequence data. Among the
three variables, sequence similarity was the most important for classi-
fication and prediction. The possibility of identifying virus transmission
between hosts without requiring complex structural analysis suggests
the importance of this sequence-based approach. Due to the lack of
available data, this method is limited to viruses whose receptor use has
been determined. In our method, it is necessary to calculate distance
matrices and perform MSA for parameterization of the characteristics
obtained from protein sequence analyses. Thus, accurate protein se-
quence data comprising sufficient sequence lengths should be available
for various species. As a result, the Infectindex was estimated for ephrin
B2 and ephrin B3 of the Nipah virus, respectively, by excluding other
receptor proteins whose sequence data for various species were in-
sufficient from the analysis. For the receptors used by other viruses,
further analyses will enable calculation of the Infectindex as soon as
sufficient data are available. We will continue to conduct additional
studies to update the relevant data and prediction tools.

In addition, our results are based on primary structural information

from full-length protein sequences and are limited in that they do not
reflect the detailed mechanisms involved in virus–host-cell interaction.
These limitations can make it difficult to explain subtle differences in
the susceptibility of host organisms to viral infections, which exhibit
differences in host range at the strain level. Therefore, the statistical
model and model-based discriminant values should be cautiously ac-
cepted at the viral species level, and further experimental validation is
required to improve applicability. For example, in the case of influenza
virus, the type of sialic acid (2,3- or 2,6-linkage), which is determined
by the biochemical repertoire of the host cell, is identified as an im-
portant factor involved in preferentially recognizing and binding to
avian or human cells. In this study, these subtype-level properties were
not applied to generate parameters for model construction. To take
these detailed features into account, additional problems should be
solved such as adjustment to the taxonomic level of other virus species
constituting the data sets and weighting the values of specific amino
acid residues that affect multiple receptor types. In considering all of
these problems, the accuracy of multivariate-based classification and
prediction can be impaired if a sufficient amount of reliable data cannot
be guaranteed. Therefore, we believe that further research should be
conducted based on our findings to discover more advanced methods
that can be applied in special cases, such as influenza virus. As dis-
cussed above, the propensity for interspecies infection, which is esti-
mated statistically for each virus species, has limitations in reflecting

Fig. 2. Main components and data flow of ViCIPR, a web-based prediction system. The data flow is shown with the process of establishing a discriminative model and
predictive protocol, a database capable of dynamic interaction, and a user-friendly web interface as the key components for the operation of analytical systems in
ViCIPR (http://lcbb3.snu.ac.kr/ViCIPR/home.jsp). As shown, we tried to construct ViCIPR based on our own statistical protocol. The results of the protocols and
prediction studies were stored in a database that can be used in ViCIPR. Operation of the ViCIPR analysis system is initiated by the input of query sequences
(nucleotides or proteins) and selection of the primary (donor) host species. Next, a similarity search is performed on the query sequence and host information with
the user's input. Based on the similarity search result, a virus species with maximum similarity is given as the output, and a selectable secondary (recipient) host
species is presented in connection with the MySQL database. The results show a calculated value for the Infectindex of the selected host pair of the corresponding
virus species at the same time as the selection of the secondary host species.
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subtle differences that may occur at lower virus classification levels.
However, under the assumption that the variable sequence similarity
itself comprehensively includes variation in subtype-specific virus–cell
interactions, which confer the receptor binding affinity that causes
changes in host tropism, it is expected that polymorphisms of receptor
sequences in a wide variety of potential host species can be accurately
measured, and the resulting information about relevant residues uti-
lized. In the present study, interaction hotspot similarity, which we
thought would serve as an important variable following preliminary
analysis, was excluded from the model due to its low significance. This
seems to be due to the limitations of the use of predicted data resulting
from the lack of information on protein tertiary structure and amino
acid residues important in viral attachment to host cells. The identifi-
cation of specific amino acid residues that participate in the virus–host
interaction would enable more realistic simulation of the infection
mechanism, which would lead to a more precise prediction of the host
ranges and infection propensities of newly emerging viruses.
Consideration of the effects of the secondary structure, physical prop-
erties and chemical properties of proteins, which are involved in vir-
us–host interactions, on host susceptibility to cross-species viral infec-
tions may improve this method. In this study, predictive variables were
determined based on receptor sequence analyses, but we believe that
the receptor-binding domains of each virus will provide significant in-
formation to improve the predictive power of the model. Further effort
should be made to improve the flexibility of the method in handling
subtle differences in host specificity that do not follow linear species
distances while ensuring high accuracy. In this regard, we are currently
parameterizing the various properties of proteins to improve model
prediction accuracy, and are working on docking simulations using
virus and host protein information to produce reliable data that can be
usefully applied in our future prediction studies. Complex factors that
determine viral host tropism, such as a variety of viral transmission
modes, the action of animal vectors or carriers, and the process of host
immune response, could be included for better prediction. Although
further refinements are needed, this approach may be useful as a basic
tool for prior studies in accurately predicting host susceptibility to new
viral infections.
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Fig. 3. A simple two-step procedure in the ViCIPR web interface. The process and results of the extraction of Infectindex for the SARS-CoV are shown. In the first step,
a similarity search of the viral genome sequence data library among the target sequence resources in the ViCIPR genomic database was performed, and the results
were output. Using the built-in search function of ViCIPR, the maximum matching score, the virus species with the best and most relevant hits, and the virus species
with hits (%) and selectable hosts corresponding to the results of significant sequence alignments were retrieved. In the second step, a list of selectable primary host
species is presented by the user's selection of the virus, which is based on the information of the virus species with the maximum percent identity among the viruses
corresponding to the target sequences. Finally, the cross-species infection propensity of the host pair determined according to the user's selection is calculated and
output to the result window. As shown, ViCIPR database similarity search results indicated that the SARS-CoV was the virus species most similar to the query
sequence. We can confirm that the selected secondary hosts H. sapiens and M. putorius furo for the primary host F. cattus are presented in the select box.
Simultaneously with selection of the secondary host species, the results of the Infectindex calculation were output to the box.
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